

Introduction to
Java Programming

MODULE - I

MODULE 1

 Introduction to Java Programming

Module Description

The main aim of learning Java programming is to make one’s own comfort zone by providing
ease of program learning in a simplest way. It impose an object oriented programming model
to create a complete application programs that can run any several distributed systems. This
module deals with object oriented programming concepts, Java data types and arrays in Java.

By the end of this course, students will be able to differentiate between the features of C++ and
Java, apply various data types, keywords and variables in a simple Java program and express
common lexical issues by creating a program in Java to count the number of spaces, identifiers
and comments.

iNurture’s Programming in Java course is designed to serve as a stepping stone for you to build
a career in Information Technology.

Chapter 1.1

Introduction to Object Oriented Programming using Java

Chapter 1.2

Operators and Looping Constructs

Chapter Table of Contents
Chapter 1.1

Introduction to Object Oriented Programming using Java
Aim ... 1
Instructional Objectives ... 1
Learning Outcomes .. 1
1.1.1 Introduction to Object Oriented Programming in Java ... 2
 (i) Evolution of Java .. 2
 (ii) Components of Java .. 7
 Self-assessment Questions .. 20
1.1.2 Data Types, Keyword and Variables ... 21
 Self-assessment Questions .. 28
1.1.3 Lexical Issues.. 29
 Self-assessment Questions .. 31
1.1.4 Arrays ... 31
Summary ... 36
Terminal Questions.. 36
Answer Keys .. 37
Activity ... 38
Bibliography .. 39
e-References .. 39
Video Links ... 39

Aim
To provide students with the basics of Object Oriented Programming using Java

Instructional Objectives
After completing this chapter, you should be able to:

• Explain the Object Oriented features in Java

• Describe the role of JVM

• Illustrate keywords, variables and data types in Java

• Demonstrate common lexical issues in Java

• Illustrate Java type conversion and casting

• Describe arrays in Java

Learning Outcomes
At the end of this chapter, you are expected to:

• Differentiate between the features of C++ and Java

• Apply various data types, keywords and variables in a simple Java program

• Demonstrate common lexical issues by creating a program in Java to count the
number of spaces, identifiers and comments

• Describe the types of type conversion with examples

• Create a program to illustrate the concept of passing an array to the method

• Demonstrate the applications of multidimensional array with an example

1

1.1.1 Introduction to Object Oriented Programming
in Java

One of the most important concepts of a programming language is its reliability. Object
Oriented Programming concept helps keeping a programming language to utmost reliable and
dependable. Let’s look down upon history of Java and how does it come to existence as a
programming language after C and C++.

(i) Evolution of Java
Researchers were thinking of a programming language which could be securable, reusable and
support all platforms and also acts as a class-based, object-oriented with specifically designed
dependencies to fix the drawbacks of existing languages like C and C++. Where C is not secured
and C++ does not have the advanced characteristic.

It intended to develop an application program which can be "write once and run anywhere"
(WORA), which means the compiled Java code can run on all platforms that support Java.

History of Java

Java is a high level general purpose object oriented language. Though it is associated with the
world of web, it is older than the origin of web. It was only developed keeping in mind the
consumer electronica and communications equipment’s. It came into existence as a web
application, web services and a platform independent programming language in 1990. In 1990
James Gosling, Bill Joy and their team began developing a language called OAK. They wanted
it mainly to control microprocessor embedded in consumer items such as cable set up boxes,
VCRs, toasters, PDA etc. To serve these goals, OAK needed to be platform independent,
extremely reliable and compact. However, as of 1993, interactive TV and PDA markets had
failed to take off. Then the internet and web explosion began and Sun shifted the target market
to internet applications and changed the name of the project to java. By 1994 Sun’s HotJava
browser appeared to locate and run applet programs on internet. HotJava demonstrate the
power of new language and makes java popular among the internet. Sun release the first public
implementation as java 1.0 in 1995. It promised write once run anywhere (WORA) providing
no run time cost on popular platform. On 13 November 2006, Sun released most of java as free
and open source software under the term of General Public license (GPL). On 8 May 2007, sun
finished the process, making all of Java’s core code free and open-source, aside from a small
portion of code to which Sun did not hold the copyright.

2

Earlier C++ was widely used to develop OOPs code but it was not platform independent and
needed to be recompiled for different CPUs. Java became very popular because of its Write
once Run Anywhere concept. Java is influenced by many programming languages like C, C++,
Smalltalk etc. and its borrowed some advance features from some other programming
languages.

Java is case sensitive or not?

Yes, Java is case-sensitive language. It is this way because of its heritage from C language. To
keep the language more familiar to what people were used to "in the day", they left it as case-
sensitive. There is an added advantage since Java identifiers can be almost any Unicode
character in the programs.

Unicode is a universal international standard character encoding that is capable of representing
most of the world's written languages such as American Standard Code for Information
Interchange (ASCII) for the United States, ISO 8859-1 for Western European Language,
GB18030 and BIG-5 for Chinese and KOI-8 for Russian and so on.

Features of Java:

The java features given below are simple and easy to understand. They are also known as java
buzzwords.

1. Simple: Java is Simple to write and more readable and eye-catching. It has a concise,
cohesive set of features that makes it easy to learn and use.

Syntax of Java is based on C++ (so Java is easier for programmers to learn it after C++).

Many confusing and/or rarely-used features are removed. For example, explicit pointers,
operator overloading etc.

2. Secure: Java program cannot harm another system thus making it safe. It provides a reliable
means of creating Internet applications and a secure way to access web applications.

No explicit pointer.

Java Programs run inside virtual machine sandbox.

3. Portable: Java programs can execute in any environment for which there is a Java run-time
system (JVM). Java programs OR codes can be run on any platform means OS (Linux,
Window, Mac). Java programs can be shifted over World Wide Web (e.g., applets)

3

We may carry the java byte code to any platform.

4. Object-oriented: Java programming is an object-oriented programming language. Like
C++ Java provides most of the object oriented features. Java is pure OOP Language.

5. Robust: Java encourages error-free programming by being strictly typed and performing
run-time checks.

There is lack of pointers that avoids security problem, automatic garbage collection,
exception handling and type checking mechanism in java. All these points make java
robust.

6. Multithreaded: Java is a multi-threaded programming language which means we can
develop multi-threaded program using Java. A multi-threaded program contains two or
more parts that can run concurrently and each part can handle different task at the same
time making optimal use of the available resources. It is said to be advanced to C++ because
C++ does not contain any built-in support for multithreaded applications. Instead, it relies
entirely upon the operating system to provide this feature.

7. Architecture-neutral: Now talking about C, C++ they are a platform dependent language's
as the file which compiler of C, C++ forms is an .exe (executable) file which is operating
system dependent. The C++ program is controlled by the operating system whereas, the
execution of a Java program is controlled by JVM (Java Virtual Machine).

8. Interpreted: The interpreted feature in C++ is very slow because it is interpreted line by
line, and makes the system a slower way of running a program than one that has been
compiled.

9. High performance: Since C++ is platform dependent, the performance of C++ is not that
much noted. Byte codes are highly optimized. JVM can execute them much faster.

10. Distributed: Java was designed with the distributed environment. Java can be transmitted,
run over the internet. RMI and EJB are used for creating distributed applications.

11. Dynamic: Java programs carry with them large amounts of run-time type information that
is used to confirm and resolve accesses to objects at run time.

4

Object Oriented Programming Concepts

Java is an Object Oriented language. It provides the feature to implement an Object Oriented
model, where it is organised around objects and logic rather than data it is used at the beginning
of software lifecycle and also used to develop other applications.

Object Oriented Programming is a technique in which programs are written on the basis of
objects for example, (Java) where it adopts a concept that views everything as an object and
implements a logic about it. Let’s see the concepts of Object Oriented Programming in detail
with a real time example.

Object

An object is nothing but a matter of thing what we find in everyday life. Technically, Java is a
software bundle of related state and behaviour.

An object has a state or properties (information such as size, height, colour, position, etc.) for
example,

Figure 1.1.1: Object with its Attributes

Class

In Java programming, the class is defined as a blueprint from which objects are created. It
models and describes the state and behaviour of an object.

For example, consider a car with several properties like the clutch, steering, break, etc.

5

Inheritance

Inheritance is a property by which state and behaviour of one class (super class) can be
inherited to its sub-class. It is a powerful and a natural mechanism for organising and
structuring a software.

For example, Human heredity

Abstraction

Hiding the implementation details from the user is called as the abstraction. Here, only the
functionality will be provided. In Java, abstraction can be achieved by the abstract class and
Interface.

A class with an abstract keyword is called as abstraction.

Interface – blueprint of a class. Full abstraction can be achieved using this mechanism.

For example, Invention of flight is based on the flying mechanism learnt from birds. So flights
are derived from base class birds.

Encapsulation

Encapsulation is one of the fundamental concept of OOP. Mechanism of binding the data and
function together in a single unit is called as encapsulation.

For example, Medicine hidden by a capsule. Where medicine is an important component
which is hidden by a capsule.

Polymorphism

Polymorphism is an ability of an object to take many forms. It reacts differently in different
situation. In Java, polymorphism is used to reduce code complexities. Methods or function of
a class implies the behaviour of polymorphism. In Java, all Java objects are polymorphic.

For example, Frogs live indifferently on land or in water.

6

(ii) Components of Java

Java Compiler

The Compiler is used to systemise the program and check against language syntax rules. It
converts the source code to byte code and then compiles them. The Java compiler generates an
architecture-neutral object file format (the compiled code – source code and byte code) to be
executable on many processors.

Source code: Collection of computer instructions written in human readable format.

 Write in java class files

Byte code: Computer object code, also called as instruction set of Java Virtual Machine.

 Writes the output in class file

Java Virtual Machine (JVM)

Java Virtual Machine – enables the computer to run Java program. It reads and interprets .class
files and executes the program’s instruction into the native hardware platform. JVM is platform
independent (obtainable for many hardware and software platforms). In the Java virtual
machine specification, the behaviour of a virtual machine instance is described in terms of
subsystems, memory areas, data types and instructions. These components describe an abstract
inner architecture for the abstract Java virtual machine. The purpose of these components is
not so much to dictate an inner architecture for implementations. It is more to provide a way
to strictly define the external behaviour of implementations. The specification defines the
required behaviour of any Java virtual machine implementation regarding these abstract
components and their interactions.

Let’s discuss what does JVM performs?

It is used to load the code.

It Verifies and executes the code.

And it provides run time environment.

7

Figure 1.1.2: Java Virtual Machine

Components of JVM:

Following are the components of JVM:

Stack

Heap

Constant Pool

Code segment

Program counter

Stack

Temporary values are stored in frames of a stack.

It contains the state of Java method invocation. While invoking a method, JVM pushes a new
frame onto that thread’s Java stack. After completion of a single method, the virtual machine
pops and discards the frame for that method.

8

Figure 1.1.3: Stack Mechanism

Heap

The Heap consists of objects. The JVM has a heap that is the runtime data area from which
memory for all class instances and arrays are allocated. It is created at the JVM start-up.

Heap Memory – Store Java objects

Non-heap memory – Store Meta data and other loaded classes.

Figure 1.1.4: Heap

9

Constant Pool

Constant pool consist of all constant data. They comprise of

Numbers

Strings

Symbolic names of classes, interfaces and fields

Program Counter

Tracking of current instruction execution at any moment is done by Program Counter (PC)
register.

It is similar to that of pointer which keeps in track of current instruction in sequence.

Every time a new thread is created, a PC register is also created simultaneously.

PC keeps a pointer to the current statement that is being executed in its thread.

Software requirements for Java:

To run other users' Java programs, a user must have the JRE (Java Runtime Environment). The
user must have the JDK (Java Development Kit) to write and run the Java programs, which is
sometimes called the System Development Kit (SDK).Do not get both JDK and JRE because
JDK includes JRE and both are the same.

The user also needs the largest and greatest version of Java which is known as "Java 2 Platform,
Standard Edition 5.0."

The user needs a text editor with which to write programs. Recommended editors are Text Pad
on Windows and BBEdit on the Macintosh. However, most IDEs include a text editor.

An Integrated Development Environment (IDE) is a single program that lets a user to edit,
compile, run, test and debugs programs, all in one place. If a user does not have an IDE, he
needs to learn how to compile and run Java programs from the command line which is not a
difficult task, just less convenient.

There are various softwares for users:

• JRE (Java Runtime Environment): The JRE provides the libraries, the java virtual
machine and components to run applets and application written in the Java
programming language.

10

• JDK (Java Development Kit): JDK is the official development kit for the Java
programming language. JDK contains the software and tools that user needs to
compile, debug and run applets and applications written using the java programming
language.

• Eclipse: It is an excellent and very popular IDE. Eclipse is a software designed to
manage IDE for Java language. It is helpful for programming applications for Window
platforms.

• NetBeans: It is Sun's IDE and catching up with Eclipse. The main advantage of
NetBeans is that it can be downloaded along with the JDK. It also provides a visual GUI
builder, but that relies on some packages that must be included with the program if it
is to run outside the NetBeans environment.

How to set path to run a program?

The path is required to be set for using tools such as javac, java etc. If user is saving the java
source file inside the jdk/bin directory, path is not required to be set because all the tools will
be available in the current directory. But if user having his java file outside the jdk/bin folder,
it is necessary to set path of JDK.

There are two ways to set java path:

1. Temporary

2. Permanent

How to set Temporary Path of JDK in windows?

To set the temporary path of JDK, user needs to follow following steps:

1. Open command prompt

2. Copy the path of jdk/bin directory

3. Write in command prompt: setpath=copied_path

For example:

set path=C:\Program Files\Java\jdk1.7.0_03\bin

11

How to set Permanent Path of JDK in windows?

For setting the permanent path of JDK, user needs to follow these steps:

Go to My Computer properties -> advanced tab -> environment variables ->new tab of user
variable -> write path in variable name ->write path of bin folder in variable value -> Click ok-
> ok->ok

For Example:

Step 1: Go to My computer properties

12

Step 2: Click on the advance tab

Step 3: Click on the environment variables

13

Step 4: Click on new tab of user variables

Step 5: Write path in variable name

14

Step 6: Copy the path of bin folder

Step 7: Paste path of bin folder in variable value

15

Step 8: Click on OK Button

Step 9: Click on OK button

Now the permanent path is set. User can execute any program of java from any drive

Simple Java Program:

Java is a general-purpose programming language. Like any programming language, Java also
has its syntax, structure and programming paradigm to build a robust, reusable and
maintainable applications programs.

16

Java programs are executed in its development environments such as Java Development Kit
(JDK) and Eclipse IDE.

Programmatically, Java is a derivative of C++language. The Syntax of Java looks similar like C.
Code blocks are modularised into methods and delimited by braces ({ }) and variables are
declared before they are used.

Java program starts with a package where the package can be defined as a namespace
mechanism. It helps to maintain the hierarchical file system, manage file system and class
system.

Figure 1.1.5: Hierarchy of Java Program Components

A simple Java program is given below:

Example program

/*

*First java program

*/

class Hello //save as Hello.java {

Public static void main (string args[]) // program entry point {

System.out.println (“Hello world!!!”); // print message

17

} //end of main

} //end of First Program class

Output of this program: Hello world!!!

Brief explanation of this above sample example:

/* */

// ... until the end of the line

/*---*/ It means comments. Comments are un-executable and are ignored by the
compiler. But they provide useful explanation and documentation to your readers. There
are two kinds of comments:

1. Multi-Line Comment: begins with /* and ends with */, and may span more than one
lines.

2. End-of-Line (Single-Line) Comment: begins with // and lasts until the end of the
modern line.

classFirstClass {

 //

 //

}

It is a class declaration. The area between the braces called body which contains all the
code that provides for the life cycle of the objects created from the class.

18

The above class declaration is a minimal one. It contains only those components of a class
declaration that are required. The programmer can provide many more information
about the class.

For example,

classFirstClass extends FirstSuperClass implements MyInterface {

 //

 //

}

It means that FirstClass is a subclass of FirstSuperClass and that it implements the
MyInterface interface.

Generally, class declarations can include these components, in order:

• Modifiers such as public, private, and some others that you will encounter later.

• The class name, with the initial letter capitalised by convention.

• The name of the class's parent (superclass), if any, preceded by the keyword extends.
A class can only extend (subclass) one parent.

• A comma-separated list of interfaces implemented by the class, if any, preceded by the
keyword implements. A class can implement more than one interface.

• The class body, surrounded by braces, {}.

public static void main(String[] args)

{......

Let’s discuss about public, static, void and main ():

• public: public means, public so that everyone can access this method.

• static: Static means that this method can be called without instantiating the class.

• void: void means this method does not return anything or main() returns no value.

• main(): It is a method or a function name which is configured to JVM (Java virtual

machine)

19

• (String [] args): It means that arguments to the main method i.e. Command line

arguments

• The braces {......} encloses the body of the method, which contains programming
statements.

System.out.println("Hello, world!");

Let’s discuss about System, out and println ():

• System: It is a class name which is present in java.lang

• out: out means that thestatic variable of type print stream present in system class

• println(): It is a method which is present in print stream class

The programming statement System.out.println ("Hello, world!") is used to print the
string "Hello, world!" to the display console. A string is surrounded by a pair of double
quotes and contain texts. The text will be printed as it is, without the double quotes. A
programming statement ends with a semi-colon (;).

Self-assessment Questions
1) Java is an architectural dependent programming language

a) True b) False

2) _________is an instance of class.
a) Package b) Object
c) Class d) None of these

3) By default , all Java objects are polymorphic

a) True b) False

20

1.1.2 Data Types, Keyword and Variables
Variables are memory locations to store values. When a user creates a variable, a memory space
is reserved for that the variable. Based on the type of the variable, the operating system allocates
memory and decides what can be stored in that reserved space. A user can store integers,
decimals, character, etc. by assigning different data types to the variables. Data type is a
keyword used to allocate sufficient memory space for the data. Pictorial representation of data
types and its classifications are given below:

Figure 1.1.6: Classification of Data Types

Let’s see the list of data types and its description in the following. The types are:

Integer

Floating point

Character

Boolean

Type conversion and Casting

Automatic Type promotion in expression

Integers

Java defines four integer types:

1. byte,

2. short,

3. int and

4. long.

21

All of these are signed, positive and negative values. Java does not support unsigned data types.
Whereas signed and unsigned integers are supported by many other computer languages. Java
designers felt that unsigned integers are unnecessary because they are mostly used to specify
behaviour of the higher order bit, which defines the sign of an integer value. The width of an
integer type should not be thought of as the amount of storage it consumes, but rather as the
behaviour it defines for variables and expressions of that type. The Java run-time environment
is free to use whatever size it wants, as long as the types behave as you declared them. The width
and ranges of these integer types vary widely, as shown in this table:

Name Width Range

long 64 −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

int 32 −2,147,483,648 to 2,147,483,647

short 16 −32,768 to 32,768

byte 8 −128 to 127

Table 1.1.1: Integers and its Types

Byte

The smallest integer type is byte. This is a signed 8-bit type that has a range from -128 to 127.
Variables of type byte are especially useful when you’re working with a stream of data from a
network or file. It can be represented as:

Byte b, c;

Short

Short is a signed 16-bit type. It has a range from –32,768 to 32,767. It is probably the least-used
Java type.

Here are some examples of short variable declarations:

short s;

short t;

Int

The most commonly used integer type is int. It is a signed 32-bit type that has a range from –
2,147,483,648 to 2,147,483,647.

22

In addition to other uses, variables of type int are commonly employed to control loops and to
index arrays.

Long

Long is a signed 64-bit type and is useful for those occasions where an int type is not large
enough to hold the desired value.

The range of a long is quite large. This makes it useful when big, whole numbers are needed.

Floating-point Types

Floating-point numbers, also known as real numbers

There are two kinds of floating-point types, float and double, which represent single - and
double-precision numbers, respectively. Their width and ranges are shown here:

Name Width in Bits Approximate Range

double 64 4.9e-324 to 1.8e+308

float 32 1.4e-0.45 to 3.4e+0.38

Table 1.1.2: Floating-point Types

Float

Float is specified as a single-precision value that uses 32 bits of storage.

Single precision is faster and takes half as much space as double precision, but will become
imprecise when the values are either very large or very small.

Here are some example float variable declarations:

float hightemp, lowtemp;

Double

Double is denoted by the keyword ‘double’ which is used to store a value of 64 bit. It is faster
than single precision on modern processor that have been optimised for high-speed
mathematical calculations. Some importance of double are:

All transcendental math functions, such as

23

 sin()

 cos()

 sqrt()

Return double values.

Double is best choice, when you need to maintain accuracy over many iterative
calculations, or are manipulating large-valued numbers.

Example Program for Integer:
Public class DataType_int
{

int a=100;
int b=-150;
void add()
{

Int c=a + b;
Sysytem.out.println (“The int value is:” +c);

}
}
Class Demo
{

public static void main(String args[])
{

Datatype_Int obj =new DataType_Int ();
Obj.add();

}
}

Output:

The int value is -50

Sample program for double variable:

// Compute the area of a circle.
class Area
{

public static void main(String args[])
{

double pi, r, a;
r = 10.8; // radius of circle
pi = 3.1416; // pi, approximately
a = pi * r * r; // compute area
System.out.println("Area of circle is " + a);

}
}

24

Output:

Area of circle is 366.435

Characters

Char in Java is not the same as char in C or C++. Java uses Unicode to represent characters.
Unicode defines a fully international character set that can represent all of the characters found
in all human languages. It is a unification of dozens of character sets, such as

Latin

Greek

Arabic

Cyrillic

Hebrew

In Java, char is 16 bit and ranges from 0 to 65,536. There are no negative chars. The standard
set of characters known as ASCII still ranges from 0 to 127 as always and the extended 8-bit
character set, ISO-Latin-1, ranges from 0 to 255.

Here is a program that demonstrates char variables:

class CharDemo
{

public static void main(String args[])
{

char ch1, ch2;
ch1 = 88; // code for X
ch2 = 'Y';
System.out.println("ch1 and ch2: ");
System.out.println(ch1 + " " + ch2);

}
}

This program displays the following output:

ch1 and ch2: X Y

Boolean

The Boolean logical operators are:

 | , & , ^ , ! , || , && , == , != .

25

Java supplies a primitive data type called Boolean, instances of which can take the value true or
false only and have the default value false. The major use of Boolean facilities is to implement
the expressions which control if decisions and while loops.

Sample Program:

class Boolean
{

public static void main(String args[])
{

// these are boolean variables
boolean A = true;
boolean B = false;
System.out.println ("A|B = "+(A|B));// Program execution using Boolean
System.out.println ("A&B = "+(A&B));
System.out.println ("!A = "+(!A));
System.out.println ("A^B = "+(A^B));
System.out.println ("(A|B)&A = "+((A|B)&A));

}
}

Syntax:

booleanValue(); // returns the value of Boolean object

Output:
A|B=true
A&B=false
!A=false
A^B=true
(A|B)&A=true

Type Conversion and casting:

Type casting is used to assign a value of one type of a variable to another type. Casting in other
words is an instruction to the compiler to convert one type to another. It helps Java not only to
perform only arithmetic operations on pairs of values of the same type but performs operations
on mixed type too.

For example, the value of the right side is automatically converted to the type of the left side in
compatible types. In Java, Boolean and int are not compatible.

int x=10;

byte y= (byte)x;

26

When the above said conditions are met, a widening conversion takes place. In Java type casting
are classified as two types

Figure 1.1.7: Type Casting and its Classification

Widening casting

In widening casting, the value types are not directly expressed. Here, integer and floating are
compatible with each other. An Integer literal can be assigned to char.

Narrow casting:

In narrow casting, the value types are directly expressed.

Let’s see the difference between widening casting and narrow casting for finer understanding.

Widening Casting Narrow Casting

Used to access new methods of child class or
while referring super class to child class

Used to access redefined class of parent class
in the child class

Table 1.1.3: Difference between Widening and Narrowing Casting

27

Sample Program:
Package conversion;
Public class main
{

Public Static Void main(string [] args)
{

int var1=12;
double var2=15.2;
double result = var1+var2;
System.Out.Println (“The sum is” + result)

}
}

Output: The sum is 27.2

Self-assessment Questions
4) Boolean is used to control the decisional statement in a program.

a) True b) False

5) Java supplies a primitive data type called____________.
a) Integer b) Float
c) Boolean d) Character

6) Any size of an integer can be handled by Java.

a) True b) False

28

1.1.3 Lexical Issues
Java programs are the collection of whitespace, identifiers, literals, comments and separators.
Lexical issues are very common in programming, which is used to analysis, operate and
implement the program in a sequential order.

Let us see the detail description of lexical issues in the following.

Whitespace

As word by itself, a whitespace is nothing but space, tab, or a new line. Java is a case sensitive
free-form language which means a user need not follow any special rules. For example, there
is no format to be followed to write a Java program. A program can be written even in a single
line or any number of lines can be used, whatever the user wishes. By default, single whitespace
is required between each character.

Identifiers

An identifier can be described as any descriptive sequence of uppercase, lowercase letters,
underscore or a dollar - sign character. Identifiers are used for specifying the class name,
method name and variable name. Since Java is case-sensitive language any letter of a word will
be different from the other form of the similar word. Let us say in Java, a word max is different
from MAX.

Literals

Literals are used to specify a default value or to declare a constant value.

It can be a:

Boolean – True or False

Numeric – Floating, decimal, integer or a fixed point

Character based – Single character or a string

29

Comments

Three types of comments are supported by Java. They are:

Comment Description

/*text*/ Compiler ignores everything from /* to */

//text Compiler ignores everything from // to the end of the line

//**documentation*/
Called as doc comment (documentation comment) – used by
automatically generated document

Table 1.1.4: Comments and its Description

Separators

Separators are characters used to terminate statements. Commonly used separators are the
semicolon (;). Following are few separators used in Java programs

Symbol Name Purpose

() Parenthesis Control the order of operation

{ } Braces Used to group statements and declaration

[] Brackets Used to declare array types and dereferencing array values

; semicolon Terminates statement

, comma Separates consecutive identifiers in a variable declaration

. period
Used to separate package name from sub packages and
classes

Table 1.1.5: Separators and its Purpose

30

Self-assessment Questions
7) ____________line space is required to separate each statement.

a) Single b) Double
c) More than one d) Not required

8) Java is a case-sensitive programming language
a) True b) False

9) _______ is used to store values specified by a data type.

a) Variables b) Identifiers
c) Literals d) Separators

1.1.4 Arrays
The Array is a collection of similar types of elements that have contiguous memory location. It
is a container object that holds values of a homogeneous type.

Java array is container object that contains elements of similar data type. It can have:

Only fixed set of elements which can be stored in it.

Also, have label as static data structure because during the time of declaration only the
size of the array is specified.

An array containing a number of variables and it can even start from zero – which is
called as an empty. Instead they are referenced by array access expressions that use non-
negative integer index values.

Syntax:

datatype[] identifier;

 Or

datatype identifier;

31

Initialisation of an array:

[] - Int operator is used to initialise an array.

For example, program

Int [] arr = new int [15]; // 15 is the size of an array.

Array Type:

The Array types are used in declarations and in cast expression. An array type is written as the
name of an element type followed by some number of empty pairs of square brackets []. The
number of bracket pairs indicates the depth of array nesting.

An array's length is not part of its type. It may be of any type, whether primitive or reference.

Arrays with an interface type as the element type are allowed. An element of such an
array may have as its value a null reference or an instance of any type that implements
the interface.

An array with an abstract class type as the element type are allowed. An element of such
an array may have as its value a null reference or an instance of any subclass of the
abstract class that is not itself abstract.

Array Variable:

A variable of an array type enfolds a reference to an object. It is used to create a variable and
does not create any space to that specified variable. Some of the variable declarations are listed
below. They are:

Declaration comment

Int [] Array of int

Short [] [] Array of short

Object [] Array of object

Collection<?> Array of collection of unknown types

Table 1.1.6: Array Variable

32

Single Dimensional Array:

A one-dimensional array consist of a list of like-typed variables.

The general form of a one-dimensional array declaration is

type var-name[]; //
syntax

The general form of new as it applies to one-dimensional arrays, appears as follows:

arrayRefVar =new dataType[arraySize];

The above statement does two things:

It creates an array using new dataType[arraySize];

It assigns the reference of the newly created array to the variable arrayRefVar.

The example below allocates a 12-element array of integers and links them to month_days.

month_days = new int[12];

After this statement executes, month_days will refer to an array of 12 integers. Further, all
elements in the array will be initialised to zero.

You can access a specific element in the array, once after you allocate an array by

Specifying its index within square brackets. All array indexes start at zero.

For example, this statement assigns the value 28 to the second element of month_days.

month_days[1] = 28;

The next line displays the value stored at index 3.

System.out.println(month_days[3]);

Putting together all the pieces, here is a program that creates an array of the number of days in
each month.

// Demonstrate a one-dimensional array.
class Array
{

public static void main(String args[])
{

33

int month_days[];
month_days = new int[12];
month_days [0] = 31;
month_days [1] = 28;
month_days [2] = 31;
month_days [3] = 30;
month_days [4] = 31;
month_days [5] = 30;
month_days [6] = 31;
month_days [7] = 31;
month_days [8] = 30;
month_days [9] = 31;
month_days [10] = 30;
month_days [11] = 31;
System.out.println ("April has " + month_days[3] + " days.");

}
}

This program generates the following output:

April has 30 days

When you run this program, it prints the number of days in April. As mentioned, Java array
indexes start with zero, so the number of days in April is month_days[3] or 30.

It is possible to combine the declaration of the array variable with the allocation of the array
itself, as shown here:

int month_days[] = new int[12];

Multidimensional Array

Java does not support multidimensional arrays. However, you can declare and create an array
of arrays

However, as you will see, there are a couple of subtle differences. To declare a multidimensional
array variable, specify each additional index using another set of square brackets. For
example, the following declares a two dimensional array variable called twoD.

int twoD [] [] = new int[4][5];

The following program numbers each element in the array from left to right, top to bottom
and then displays these values:

// Demonstrate a two-dimensional array.
class TwoDArray
{

34

public static void main(String args[])
{

int twoD[] []= new int[4][5];
int i, j, k = 0;
for(i=0; i<4; i++)
for(j=0; j<5; j++)
{

twoD[i][j] = k;
k++;

}
for(i=0; i<4; i++)
{

for(j=0; j<5; j++)
System.out.print(twoD[i][j] + " ");
System.out.println();

}
}

}

This program generates the following output:

0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

35

Summary
o Java is an Object Oriented Programming Language.

o Java is a technically blended language which has a rich elements that can address
any changing expectations.

o Java adopts a concept that views the very thing as an object and places an extra
ordinary demands on the programs.

o Variables are memory locations to store values.

o A class is defined as a blueprint from which objects are created.

o Casting is an instruction to the compiler to convert one type to another.

o Separators are characters used to terminate statements.

o Array is a collection of similar types of elements that have contiguous memory
location.

o Java does not support multi-dimensional array.

Terminal Questions
1. Explain various data types, keywords and variables with an example Java program

2. What is an array in Java? Explain its types with an example.

3. What are lexical issues and explain how does it help in program implementation?

36

Answer Keys

Self-assessment Questions

Question No. Answer

1 b

2 b

3 a

4 a

5 b

6 a

7 a

8 a

9 a

37

Activity
Activity Type: Online Duration: 30 Minutes

Description:

Do an online study and prepare a presentation of 10-15 slides which describes the evolution
of Java from C++.

You are required to:

a) Differentiate between C++ and Java and list down the secure features of Java when
compared to C++

b) Pen down the strategies used in Java to make it reliable and robust with a real time
example

38

Bibliography
e-References

• The complete reference Java-2: Herbert Schildt-5th edition- McGraw Hill
professional. Retrieved on 12th April 2016 from
http://www.sebizfinishingschool.com/ebook/java/Java%202%20-
%20The%20Complete%20Reference%20(5th%20Edition).pdf

• SAMS teach yourself Java-2- Rogers Cedenhead and Leura Lemay- 3rd edition –
Pearson. Retrieved on 12th April 2016 from
http://workbench.cadenhead.org/book/java24hours/

Video Links

Topic Link

An Overview of Java http://www.youtube.com/watch?v=kfgafdfmwAs

Data Types, keywords and
Variables

http://www.tutorialspoint.com/java/java_basic_datatypes.htm

Lexical Issues http://www.youtube.com/watch?v=G1ubVOl9IBw

Array
http://ecomputernotes.com/java/what-is-java-language/what-
is-java-

39

 Notes:

40

	1.1.1 Introduction to Object Oriented Programming in Java
	(i) Evolution of Java
	(ii) Components of Java
	Self-assessment Questions
	1.1.2 Data Types, Keyword and Variables
	Self-assessment Questions
	1.1.3 Lexical Issues
	Self-assessment Questions
	1.1.4 Arrays
	Summary
	Terminal Questions
	Answer Keys
	Activity
	Bibliography
	e-References
	Video Links

