

Chapter Table of Contents
Chapter 1.2

Operators and Looping Constructs
Aim ... 41
Instructional Objectives ... 41
Learning Outcomes .. 41
1.2.1 Operators in Java ... 42
 (i) Relational Operator .. 42
 (ii) Bitwise Operator .. 43
 (iii) Relational Operator ... 44
 (iv) Boolean Logical Operation .. 45
 (v) Assignment Operators .. 47
 (vi) Operator Precedence.. 48
 Self-assessment Questions .. 50
1.2.2 Control Statements ... 51
 (i) Selection Statement .. 51
 (ii) Iteration Statement ... 56
 (iii) Jump Statements .. 63
 Self-assessment Questions .. 68
Summary ... 69
Terminal Questions.. 69
Answer Keys .. 70
Activity ... 70
Bibliography .. 71
e-References .. 71
Video Links ... 71

Aim
To provide the students, knowledge of operators and looping constructs Java
programming

Instructional Objectives
After completing this chapter, you should be able to:

• Illustrate various operators in Java

• Explain operator precedence

• Demonstrate different control statements in Java

Learning Outcomes
At the end of this chapter, you are expected to:

• Describe the role of operators in java with example

• Apply operator precedence in an arithmetic expression by Converting an infix
expression to postfix expression

• Develop programs to demonstrate different operators and control statements
in Java

• Differentiate between break and continue statement

41

1.2.1 Operators in Java
Operators in Java are used to perform arithmetic operations. They comprises of rich set of
operators to manipulate variables. Following are some of the operators:

• Arithmetic Operators

• Relational Operators

• Bitwise Operators

• Logical Operators

• Assignment Operators

(i) Relational Operator
The operands of the arithmetic operators are of a numeric type because you cannot use them
on Boolean types. However, you can use them on char types since the char type in Java is,
essentially, a subset of int. Arithmetic Operators:

Arithmetic operators are operators used to perform mathematical expression. It takes
numerical expression as their operands and return a single value as a result. Following are the
standard arithmetic operators.

Operators Symbol

Addition +

Subtraction(also unary minus) -

Multiplication *

Division /

Modulus %

Increment ++

Addition assignment +=

Multiplication assignment *=

Subtraction assignment -=

Division assignment /=

Modulus assignment %=

Decrement - -

Table 1.2.1. Arithmetic Operators

42

Syntax:

Operand 1 + Operand 2

Subtraction:

Provide difference by subtracting two operands

Syntax:

Operand 1 – Operand 2

Multiplication:

Product of two operands can be yielded using multiplication operators.

Syntax:

Operand 1 * Operand 2

Division:

Produces the quotient of its operands where the left operand is the dividend and the right
operand is the divisor.

Syntax:

Operand1 / Operand 2

Operators and their uses:

Operators Syntax Uses

Addition Operand 1 + operand 2 Sum two operands

Subtraction Operand 1 – Operand 2 Provides difference of operands

Multiplication Operand 1 * Operand 2 Product of two operands can be yielded

Division Operand 1 / Operand 2 Produces the quotient of operands

Table 1.2.2: Operators and their Uses

(ii) Bitwise Operator
Bitwise operators - Binary operators treat their operands as a sequence of bits (zeroes and ones),
rather than as decimal, hexadecimal, or octal numbers.

43

For example, the decimal number nine has a binary representation of 1001. Bitwise operators
perform their operations on such binary representations, but they return standard JavaScript
numerical values.

Java defines some bitwise operators that can be implemented to the integer types, long, int,
short, char and byte. These operators act upon the individual bits of their operands.

(iii) Relational Operator
In Java, relational operators are used to check relation between two variables or numbers. They
are also called as comparison operators since the outcome will be of true or false (Boolean)
values. Relational operators are commonly used in conditional statement (if statement /
looping statement) in order to check the conditions (true or false).

Operator Result

~ Bitwise unary NOT

& Bitwise AND

^ Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

|= Bitwise OR assignment

^= Bitwise exclusive OR assignment

>>= Shift right assignment

>>>= Shift right zero fill assignment

<<= Shift left assignment

Table: 1.2.3: Relational Operator

Sample program

The result of these operations is a Boolean value. The relational operators are most commonly
used in the definitions that control the ‘if’ statement and the multiple loop statements. Any type
in Java, containing integers, floating-point numbers, characters and Booleans can be compared
using the inequality test, ==, != equality test. Notice that in Java equality is denoted with two

44

equal signs, not one. (Remember: a single equal sign is the distribution operator.) Only numeric
types can be compared using the ordering operators. Means, only integer, floating-point and
character operands may be compared to see which is greater or less than the other. As stated,
the result produced by a relational operator is a Boolean value.

For example,

class Relational {

 public static void main(String[] args){

 int value1 = 1;

 int value2 = 2;

 if(value1 == value2)

 System.out.println("value1 == value2");

 if(value1 != value2)

 System.out.println("value1 != value2");

 if(value1 > value2)

 System.out.println("value1 > value2");

 if(value1 < value2)

 System.out.println("value1 < value2");

 if(value1 <= value2)

 System.out.println("value1 <= value2");

 }

}

Output:

value1 != value2

value1 < value2

value1 <= value2

45

(iv) Boolean Logical Operation
The Boolean logical operators displayed here operate only on Boolean operands. Each of the
binary logical operators combines two Boolean values to determine a resultant Boolean value.

Operator Result

& Logical AND

| Logical OR

^ Logical XOR (exclusive OR)

|| Short-circuit OR

&& Short-circuit AND

! Logical unary NOT

&= AND assignment

|= OR assignment

^= XOR assignment

= = Equal to

!= Not equal to

?: Ternary if-then-else

Table 1.2.4: Boolean Logical

The Logical Boolean operators, &, | and, ^, ! Operate on Boolean conditions in the similar way
that operators work on the bits of an integer. The logical! Operator inverts the Boolean state:

!true == false and! False == true.

The following table shows the outcome of each logical operation:

A B A|B A&B A^B !A

False False False False False True

True False True False True False

False True True False True True

True True True True False False

Table 1.2.5: Outcome of each Logical Operation

46

Sample Program
class BooleanLogic
{

public static void main(String args[])
{

boolean A = true;
boolean B = false; // these are boolean variables
System.out.println ("A|B = "+(A|B));
System.out.println ("A&B = "+(A&B));
System.out.println ("!A = "+(!A));
System.out.println ("A^B = "+(A^B));
System.out.println ("(A|B)&A = "+((A|B)&A));
System.out.println ("(A&&B)&A = "+((A&&B)&A));
System.out.println ("(A==B)&A = "+((A==B)&A));

}
}

Here is the Output of this program:

A|B=true

A&B=false

!A=false

A^B=true

(A|B)&A=true

(A&&B)&A=false

(A==B)&A=false

(v) Assignment Operators
The assignment operator is the individual equal sign, =. The assignment operator works in Java
much as it does in any other computer language. It has this general form:

var = expression;

Here, the type of var must be compatible with the type of expression.

The assignment operator does have one interesting attribute that you may not be familiar with:
it allows you to create a chain of assignments. For example, consider this fragment:

int i, j, k;
i = j = k = 200; // set i, j and k to 200

47

This fragment sets the variables i, j and k to 200 using a single statement. It works because the
= is an operator that yields the value of the right-hand expression. Thus, the value of k = 200 is
200, which is then assigned to j, which in turn is assigned to i. Using a “chain of assignment” is
a simple procedure to set a group of variables to a standard value.

(vi) Operator Precedence

Precedence by name implies the order of code execution. For example, addition and
subtraction has lower precedence than multiplication and division.

Explicit parenthesis are used to override the precedence. Operator precedence in Java can be
classified as

• Precedence order

• Associativity

• Precedence and Associativity of Java

Precedence Order:

Operator with higher precedence goes first, when two operators share their operand.

For example,

1+4/2 is treated as 1+ (4 / 2)

Associativity:

Associativity means the order in evaluating the expression with similar precedence.

Let’s see an example of how associativity works:

a = b = c = 15 can be written as a = (b = (c = 15))

This happens because, = operator has right-to-left associativity and an assignment statement
always evaluates to the value on the right hand side.

Precedence and Associativity of Java:

Let’s have a look on the table below which shows all Java operators from highest to lowest
precedence, along with their associativity.

48

Notify that the first row shows items that you may not usually think of as operators:
parentheses, square brackets and the dot operator. Technically, these are called separators, but
they act like operators in an expression. Parentheses are used to alter the precedence of an
operation. As you know from the previous chapter, the square brackets give array indexing.

Operator Description Associativity

[]
.

()
++
--

Access array element
Access object member
Invoke a method
Post increment
Post decrement

Left to Right

+ +
- -
+
-
!
~

Pre – Increment
Pre – Decrement
Unary plus
Unary minus
Logical NOT
Bitwise NOT

Right to Left

*
/
%

Multiplicative Left to Right

< < = > > = Relational Type Conversion Left to Right

= =
! =

Equality Left to Right

&
^
|

&&
||
?:

Bitwise AND
Bitwise XOR
Bitwise OR
Conditional AND
Conditional OR
Conditional

Left to Right

Table 1.2.6: Precedence and Associativity of Java

49

Self-assessment Questions
1) The highest order precedence operator(s) in Java is/are _______________.

a) () b) { }
c) Both a and b d) []

2) In Java which of the following assignment operators are does not exist?

a) % b) >>>
c) <<< d) >>

3) The output of a relational operator is a Boolean value.

a) True b) False

50

1.2.2 Control Statements
In Java, control statements are used to control the order of execution of the program. They are
split up into three categories:

1. Selection statement

2. Iteration statement

3. Jump statement

Figure 1.2.1: Control Statements

(i) Selection Statement
In Java, selection statements are used to

• Find different path of execution based on the outcome of an expression or state of a
variable.

• Control to the execution of the program.

If statement

If statements also called as conditional statement. If statement executes the statements
associated with it only if the specified condition is true. Else it will skip the execution and
continue with the rest of program, if else keyword is specified.

51

Sample program
import java.util.Scanner;
public class If
{

public static void main(String args[])
{

int age;
Scanner inputDevice = new Scanner (System.in);
System.out.println("Enter Your Age");
age = inputDevice.nextInt();
if(age>15)
System.out.println("above 15");

}
}

Output:

Enter Your Age 20

above 15

If else statement:

In the preceding section, we used only a simple if statement. If a condition turns out to be true,
then it will execute statements in the curly braces. What if that condition was false? The
execution will go out of the if block to the next line of code. But, you may want to perform some
action or show some message if the condition is false. The Java if-else statement can be used
with the if statement when a condition is false.

Syntax for if and else statement:
If(condition)
{

Statement ; // Code to be executed if condition is true
}
else
{

Statement ;
} // Code to be executed if condition is true

52

Sample Program:
import java.util.Scanner;
public class Demo1
{

public static void main(String args[])
{

int age;
Scanner inputDevice = new Scanner (System.in);
System.out.println (“Enter Age”);
Age = inputDevice.nextInt ();
If (age>=15)
System.out.println (“above 15);
else
System.out.println (“below 15”);

}
}

Output:

Enter Age 16

Above 15

Enter Age 11

Below 15

Switch Statement:

The switch statement is a multi-way branch statement. It provides an easy way to dispatch
execution to different parts of your code based on the value of an expression. Such as, it often
provides a better alternative than an extensive series of if-else-if statements. Here is the general
form of a switch statement:

General form of switch statement (syntax):

switch(expression)
{

case value1:
//statement sequence
break;
case value1:
//statement sequence
break;
.
.
.
case valueN:
//statement sequence
break;

53

default:
// default statement sequence

}

The expression must be the byte, char, int, or short; each of the values specified in the case
statements must be of a type compatible with the expression. Each case value must be an
incomparable literal (that is, it must be a constant, not a variable). Duplicate case values are not
allowed.

Working of the switch statement: The value of the expression is associated with each of the
literal values in the case statements. If a match is detected, the code sequence following that
case statement is done. If constants do not match with the value of the expression, then the
default statement is done. Though, the default statement is arbitrary. If no case matches and
also no default is being, then no more action is taken.

The break statement is applied within the switch statement to end a statement sequence. When
a break statement is encountered, execution branches to the first line of code that follows the
entire switch statement. It has the effect of “jumping out” of the switch.

Here is a simple example that uses a switch statement:

// A switch statement example.
class SwitchStatement
{

public static void main(String args[])
{

for(int p=0; p<5; p++)
switch(p)
{

case 0:
System.out.println("p is zero.");
break;
case 1:
System.out.println("p is one.");
break;
case 2:
System.out.println("p is two.");
break;
case 3:
System.out.println("p is three.");
break;
default:
System.out.println("p is greater than 3.");

}
}

}

54

Output for this program:

p is zero.

p is one.

p is two.

p is three.

p is greater than 3.

p is greater than 3.

As you can see in this above example, each time through the loop, the statements correlated
with the case constant that matches p are executed. All others are bypassed. After p is greater
than 3, no case statements match, so the default statement is executed.

Nested switch statements:

You can apply a switch as part of the statement series of an external switch. It is called a nested
switch. Since a switch statement defines its block, no conflicts arise between the case constants
in the internal switch and those in the external switch.

For example, the following

the fragment is entirely valid:
switch(count)
{

case 1:
switch(target)
{

// nested switch
case 0:
System.out.println("target is zero");
break;
case 1: // no conflicts with the external switch
System.out.println("target is one");
break;

}
break;
case 2: // ...

}

Here, the case 1: statement in the inside switch does not conflict with the case 1: statement in
the external switch. The count variable is only compared with the list of cases at the outer level.
If the count is 1, then the target is compared with the inner list cases.

55

In summary, there are three main features of the switch statement to note:

• The switch differs from the if in that switch can only test for equality, whereas if can
evaluate any Boolean expression. That is, the switch looks only for a match between the
value of the phrase and one of its case constants.

• No two case connected to the same switch can have the same values. A switch statement
and an enclosing without switch statement can have case constants in common.

• A switch statement is usually more efficient than a set of nested ifs.

(ii) Iteration Statement
Java’s iteration statements are for "for ", "while " and "do-while ". These statements create what
we commonly call loops. As you reasonably know, a loop regularly executes the same set of
guidance until a termination condition is met. As you will see, Java has a loop to fit any
programming need.

There are three types of iteration statements. They are:

1. while statement

2. do-while statement

3. for statement

While statement:

Let’s see what does while statement do in Java programming:

• It uses a Boolean expression to control iteration.

• It executes as long as the Boolean expression is true.

• Set of statements are repeated until the condition for termination is met.

Syntax:
while (condition)
{

//body of the while loop
}

56

Sample program
Class Example
{

public static void main (String args[])
{

int count =1;
While (count<5)
{

System.out.println (“count is:”+count);
count++;

}
}

}

Output:

1 2 3 4

Do-while statement:

As you just noticed, if the conditional expression controlling a while loop is initially invalid,
then the body of the loop will not be executed at all. Though, sometimes it is desirable to run
the body of a loop at least once, despite if the conditional expression is wrong to begin with. In
other words, when you would like to check the termination expression at the end of the loop
rather than at the beginning. Fortunately, Java provides a circuit that does just that: the do-
while. The do-while loop always executes its body at least once, because its conditional
expression is at the bottom of the loop.

Its general form is:

Syntax for do-while statement:

do
{

(statements);
}
while (expression);

Let's see a reworked version of the “tick” program that demonstrates the do-while loop. It
generates the same output as before.

// Demonstrate the do-while loop.
class DoWhileStatement
{

public static void main(String args[])
{

int i = 7;

57

do
{

System.out.println("tick " + i);
i--;

} while(i > 0);
}

}

The loop in the preceding program, while technically correct, can be written more
efficiently as follows:

do
{

System.out.println("tick " + i);
}
while(--i > 0);

In this example, the expression (– –i > 0) combines the decrement of i and the test for zero into
one expression. Here is how it works. First, the – –i statement executes, decrementing i and
returning the new value of i. This value is then compared with zero. If it is greater than zero,
the loop continues; otherwise it terminates.

Sample program

Let's see a do-while to process a menu selection:

class MenuSelection
{

public static void main(String args[])
throws java.io.IOException
{

char choice;
do
{

System.out.println("Help on:");
System.out.println(" 0. if");
System.out.println(" 1. switch");
System.out.println(" 2. while");
System.out.println(" 3. do-while");
System.out.println(" 4. for\n");
System.out.println("Choose zero:");
choice = (char) System.in.read();

}
while(choice < '0' || choice > '4');
System.out.println("\n");
switch(choice)
{

case '1':

58

System.out.println("The if:\n");
System.out.println("if(condition) statement;");
System.out.println("else statement;");
break;
case '2':
System.out.println("The switch:\n");
System.out.println("switch(expression) {");
System.out.println(" case constant:");
System.out.println(" statement sequence");
System.out.println(" break;");
System.out.println(" // ...");
System.out.println("}");
break;
case '3':
System.out.println("The while:\n");
System.out.println("while(condition) statement;");
break;
case '4':
System.out.println("The do-while:\n");
System.out.println("do {");
System.out.println(" statement;");
System.out.println("} while (condition);");
break;
case '5':
System.out.println("The for:\n");
System.out.print("for(init; condition; iteration)");
System.out.println(" statement;");
break;

}
}

}

Here you can see a sample run produced by this above program:

Help on:

1. if

2. switch

3. while

4. do-while

5. for

Choose one: 4

59

The do-while:
do
{

statement;
} while (condition);

In the program, the do-while loop is used to verify that the user has entered a valid choice. If
not, then the user is prompted. The menu should be produced at least once during execution,
the while is the perfect loop to accomplish this in this statement.

For statement

Starting with JDK 5, there are two forms of the "for" loop. The first one is the old form that has
been in use since the original version of Java. The second is the new “for-each” form. Both types
of for loops are explained here, starting with the old form.

Here is the general form of the traditional for statement:

Syntax:
for (initialisation; condition; increment/decrement)
{

Statements;
}

If only one statement is being renewed, there is no need for the curly braces. The for loop
operates as follows. When the loop first starts, the initialisation division of the loop is executed.
It is an expression that sets the value of the loop control variable, which acts as a counter that
controls the loop. It is important to understand that the initialisation expression is only
executed once. Next, the condition is evaluated. Be a Boolean expression. It tests the loop
control variable upon a destination value. If this expression is true, then the body of the loop is
executed. If it is false, the loop terminates.

Next, the emphasis portion of the loop is executed. It is an expression that increments or
decrements the loop switch variable. The loop then iterates, first judging the conditional
expression, then performing the body of the loop and then executing the emphasis expression
with each pass. This process repeats continuously until the controlling expression is false.

Let's see a version of the “tick” program that uses a for loop:

// Demonstrate the for loop.
class ForTickLoop
{

public static void main(String args[])

60

{
int n;
for(i=9; i>0; i--)
System.out.println("tick " + i);

}
}

Sample program:
Class Demo
{

Public static void main (string args[])
{

for (int i=1; i<3; i++)
{
Sytem.out.println (“count is:” + i);

}
}

}

Output:

count is: 1

count is: 2

Nested Loops:

Nested loops are very helpful in processing information. It can be described as, if one loop
contains another then the second loop is said to be nested inside the first.

In Java programming, any number of loops can be nested.

Following section shows the syntax of nested loops.

Syntax - nested loop statement

for(initialisation; test condition; increment/decrement)
{

statements;
while(expression)
{

statements;
|
|
|
do
{

statements;
}while(expression);

}
}

61

Syntax – nested for statement
for(initialisation; test condition; increment/decrement)
{

statements;
for(initialisation; test condition; increment/decrement)
{

statements;
|
|
|
for(initialisation; testcondition; increment/decrement)
{

statements;
}

}
}

Syntax – nested while
While(expression)
{

statements;
|
|
|
While(expression)
{

statements;
}

}

Sample Program
public class Nested
{

Public static void main (string args[])
{

for (int i=1; i<=5; i++)
{

System.out.println (“”);
for (int j=1; j<=i; j++)
{
System.out.println (j);

}
}
System.out.println (“”);

}
}

62

Output:

1

12

123

1234

12345

(iii) Jump Statements

Java supports three jump statements: break, continue and return. Certain statements shift
control to another part of the program. Each is examined here.

1. Break

2. Continue

3. Return

Break Statement:

In Java Language, the break statement has three uses. First, as you have seen, it terminates a
state In Java, the break statement has three purposes. First, as you have seen, it ends a statement
sequence in a switch statement. Second, it can be used to exit a loop. Third, it can be utilised as
a “civilised” form of goto. One statements are explained here.

Break statements are used to:

• Terminate the statement sequence.

• Transfer controls to other parts of the program.

• Exit from a loop, if any specified conditions evaluates to true, then the break statement
can be used to terminate the loop instantly.

Syntax for break statement:

break;

63

Using break to exit a loop:

Let's see an example that how break exit from a loop:

// Using break to exit a loop.
class BreakLoopExit
{

public static void main(String args[])
{

for(int p=0; p<50; p++)
{

if(p == 10) break; // terminate loop if p is 10
System.out.println("p: " + p);

}
System.out.println("Loop complete.");

}
}

The above program generates the following output:

p: 0

p: 1

p: 2

p: 3

p: 4

p: 5

p: 6

p: 7

p: 8

p: 9

Loop complete.

Now you can see, though the for loop is designed to run from 0 to 49, the break statement
causes it to ends early when p equals 10(0 to 9).

Goto Statement

Goto statement is used to transfer the control to the user desired location. This statement refer
the label in the same function only.

64

Syntax:

goto label;

Sample program
import java.util.Scanner;
class Demoo
{

public static void main(String args[])
{

int num, i,sum=0;
go:
{

Scanner data = new Scanner(System.in);
System.out.println("Enter a number :");
num=data.nextInt();
for(i=0;i<50;i++)
{
sum=sum+i;
if(i==num)
break go;

}
}
System.out.println("Sum of odd number:"+sum);

}
}

Here is the output for this above example:

Enter a number: 35

Sum of odd number: 630

It means goto statement is used to transfer the control to the user defined value location. When
will user enter the random value between 0 to 49, it will show you only the sum of odd numbers.
This statement refers the label in the same function only.

Continue Statement:

Continue statements are used

• Inside the bounds of loop statement itself.

• To continue the conditional statements until it satisfies the specified condition.

• To skip the rest of the statements in the body of the loop and continue with the next
iteration of the loop.

65

Syntax

continue;

Sample program:
public class Demo3
{

public static void main (String args[])
{

int [] numbers = {5,10,15,20,25,30,35,40,45,50};
for (int x: numbers)
{

if(x= = 40)
{
Continue;

}
System.out.println (x);
System.out.println (“\n”);

}
}

}

Output:

5

10

15

20

25

30

35

45

50

66

Break statement Continue statement

A break statement results in the termination
of the statement to which it applies
(Switch, for, do, or while).

A continue statement is used to end the current
loop iteration and return control to the loop
statement.

The break statement results in the
termination of the loop, it will come out of
the loop and stops further iterations.

The continue statement stops the current
execution of the iteration and proceeds to the
next iteration. The return statement takes you
out of the method. It stops executing the method
and returns from the method execution.

A break statement when applied to a loop
ends the statement.

A continue statement ends the iteration of the
current loop and returns the control to the loop
statement.

If the break keyword is followed by an
identifier that is the label of a random
enclosing statement, execution transfers out
of that enclosing statement.

If they continue keyword is followed by an
identifier that is the label of an enclosing loop,
execution skips to the end of that loop instead.

a break statement discontinues the execution
of the loop and gets the control out of the
loop after meeting the condition

On the other hand the continue statement on
meeting the condition, goes to the beginning of
the loop and re-executes it.

Table 1.2.7: Difference between Break and Continue Statements

Return Statement:

In Java return statements are used to:

• Return from a method.

• Transfer back the control to the caller of the method.

• Terminate the method in which it is performing currently.

Syntax

return value;

67

Sample Program

public int mul(int a, int b)
{

int c=a*b;
return c;

}
public static void main(String args[])
{

sample obj= new sample();
int x=obj.mul(4,3);
System.out.println(x);

}

Output

12

Self-assessment Questions
6) Switch statements cannot have identical values in two cases.

a) True b) False

7) Identify loop statement from the following
a) If statement b) Switch statement
c) If else d) For statement

8) ____________is a statement written in sequence and repeated until a specified

condition is satisfied.
a) Format b) Case
c) Loop d) Condition

68

Summary
o Operators and looping constructs directs the user how to perform, manipulate and

control Java programs in its environment.

o Operators in Java are used to perform arithmetic operations.

o Relational operators are used to check relation between two variables or number.

o Precedence by name implies the order of code execution of a program.

o Selection statements allow the program to choose different ways of execution based
upon the result of an expression or the state of a variable.

o Iteration statements allow program execution to repeat multiple statements (that
is, iteration statements form loops).Jump statements allow your program to
perform in a nonlinear fashion. All of Java control statements are examined here.

o In Java Language, the break statement has three uses. First, as you have seen, it
terminates a stateIn Java, the break statement has three purposes. First, as you have
seen, it ends a statement sequence in a switch statement. Second, it can be used to
exit a loop. Third, it can be utilised as a “civilised” form of goto.

o Java provides a circuit that does just that: the do-while. The do-while loop always
executes its body at least once, because its conditional expression is at the bottom
of the loop.

Terminal Questions
1. Describe the role of operators in Java with an example.

2. Explain control statements and its functions with examples

3. What are loops? Explain how loops controls the program execution.

69

Answer Keys
Self-assessment Questions

Question No. Answer

1 c

2 b

3 a

4 b

5 d

6 c

Activity
Activity Type: Online Duration: 30 Minutes

Description:

Create a table which lists all the operators in Java and describes its functions.

70

Bibliography

e-References

• The complete reference Java-2 - Herbert Schildt-7th edition- McGraw Hill
professional (Schildt, 2016). Retrieved on 12th April 2016, from
https://iamgodsom.files.wordpress.com/2014/08/java-the-complete-reference-
7th-edition.pdf

• Schildt, H. (2016). The complete reference Java (7th ed.). Retrieved on 12th April
2016, from http://iiti.ac.in/people/~tanimad/JavaTheCompleteReference.pdf

Video Links

Topic Link

Operators
http://www.freejavaguide.com/boolean_operators.htm
www.youtube.com/watch?v=lKGQU-d1Y6E

Selection statement
http://www.javasimplified.com/selection-statements-
in-java/

Arrays https://www.youtube.com/watch?v=o4VzblFTwII

Control statement https://www.youtube.com/watch?v=7x4u8ItJlCA

71

http://iiti.ac.in/people/%7Etanimad/JavaTheCompleteReference.pdf

 Notes:

72

	Chapter Table of Contents
	1.2.1 Operators in Java
	(i) Relational Operator
	(ii) Bitwise Operator
	(iii) Relational Operator
	(iv) Boolean Logical Operation
	(v) Assignment Operators
	(vi) Operator Precedence
	Self-assessment Questions
	1.2.2 Control Statements
	(i) Selection Statement
	(ii) Iteration Statement
	(iii) Jump Statements
	Self-assessment Questions
	Summary
	Terminal Questions
	Answer Keys
	Activity
	Bibliography
	e-References
	Video Links

