

Chapter Table of Contents
Chapter 5.2

Setting up a Java Database Connectivity
Aim ... 277
Instructional Objectives ... 277
Learning Outcomes .. 277
5.2.1 Setting up JDBC .. 278
 (i) Loading a Driver ... 278
 (ii) Connecting to a Database .. 278
 (iii) Creating and Executing JDBC Statements .. 281
 Self-assessment Questions .. 283
5.2.2 Handling SQL Exceptions .. 285
 Self-assessment Questions .. 288
5.2.3 Accessing ResultSets ... 289
 Self-assessment Questions .. 291
5.2.4 An Example JDBC Application to Query a Database ... 292
 Self-assessment Questions .. 294
Summary ... 295
Terminal Questions.. 296
Answer Keys .. 297
Activity ... 298
Bibliography .. 299
e-References .. 299
External Resources ... 299

Video Links ... 299

Aim
To provide students with basics concepts and set up procedures for Java Database
Connectivity

Instructional Objectives
After completing this chapter, you should be able to:

• Demonstrate JDBC setup

• Illustrate the ways to handle SQL exceptions

• Describe the ways to access result sets

• Demonstrate an example JDBC application

Learning Outcomes
At the end of this chapter, you are expected to:

• Describe the ways to create and execute JDBC statements

• Describe exception handling in JDBC

• Identify different types of result sets

• Justify whether a statement and its resultSet will be closed on a commit or
rollback

• Connect excel spreadsheet using JDBC in Java

277

5.2.1 Setting up JDBC

(i) Loading a Driver
Before you can connect to a database in Java, you need to load the driver. There are two
methods possible and it depends on the code used. The methods are as follows:

1. First method

To access a database in Java application, the driver needs to be installed initially with the
program. It can be done using static registerDriver() method of java.sql.Drivermanager, this
class manages JDBC drivers for basic services. In this method, it takes the “driver” class as input,
i.e., a class that used to implement java.sql.Driver interface (in this case: OracleDriver)

Note: forName() can be used alternatively for java.lang.class to load JDBC drivers directly. For
example, Class.forName ("oracle.jdbc.OracleDriver");

2. Second method

This process transfers the driver as a parameter to the Java Virtual Machine (JVM) as it begins,
practising - D argument.

For example, java-Djdbc.drivers=org.postgresql.Driverexample.PictureViewer

In this example, the JVM will try to load the driver as part of its beginning. Once done, the
PictureViewer will start to load.

Now, this method is the better one to use because it allows code to be used by different type of
database packages without recompiling the program code.

One last thing in loading driver is when program code then tries to open a Connection and the
developer gets a No driver ready SQLException being thrown by it; this is reasonably effected
by the driver not moving in the classpath, or the value of the parameter not being correct.

(ii) Connecting to a Database
To get started and for purity's sake, we'll use a terminal or console window to find out the
results/output from a database.

278

a) To start a new project:

File>New Project from the NetBeans menu onto the window

Create a Java Application.Call the project database_console and the Main class

b) When you click on Finish button onto the window, your code must look like this:

Package database_console
public class DBConnect
{

public static void main(String [] args)
}

Connecting to the Database: Developer needs a connection object to connect to a database.
This connection object uses a Driver Manager. This Driver Manager passes in developer's
database username and the location of the database.

c) Developer must use these three critical statements to the top of the code:

Import java.sql.Connection;

Import java.sql.DriveManager;

Import java.sql.SqlException;

To setup up a link with a database, the code will be:

Connection conn=DriverManager.getConnection(host,username,password);

So the DriverManager has a method named getConnection. It needs a hostname, username,
password. If a connection is successful, a connection object will be create called con.

The address of the highlighted database overhead is:

JDBC:derby://localhost:1234/Employee

Jdbc:derby://localhost is the database type and server that developer is using. The 1234 is the
port number and Employees is a Database name. This can all go in String Variable:

String host ="Jdbc:derby://localhost:1234/Employee";

d) You can add two or more strings for the username and the password:

String urName="My_Username_Here";

279

String urPass="My_Password_Here";

After adding these three connection string your code will look like this:

packagedatabase_console
Import java.sql.Connection;
Import java.sql.DriveManager;
Import java.sql.SqlException;
public class DBConnect
{

public static void main(String [] args)
{

String host ="Jdbc:derby://localhost:1234/Employee";
String urName="My_Username_Here";
String urPass="My_Password_Here";
Connection
con=DriverManager.getConnection(host,username,password);

}
}
 //But sometimes a SqlException Error may occur in "Connection
con=DriverManager.getConnection(host,username,password)".//

The developer needs to write code to deal with this potential error.

In the code below, just tapping the error in catch part of the try catch statement.

Try{}catch(SqlExceptioner)
{

System.out.println(er.getMessage());
}
Add this above try..catch block code with the main code, then your
code will be look like this:
packagedatabase_console
Import java.sql.Connection;
Import java.sql.DriveManager;
Import java.sql.SqlException;
public class DBConnect
{

public static void main(String [] args)
{

try
{

String host ="Jdbc:derby://localhost:1234/Employee";
String urName="My_Username_Here";
String urPass="My_Password_Here";
Connection
con=DriverManager.getConnection(host,username,password);

}
catch(SqlExceptioner)
{

280

System.out.println(er.getMessage());
}

}
}

Now connect your database with Database Server: NetBeans>Services>Databases>Start
Server

Once your server started, run the program. If developer found error related with driver then
use these steps:

When to click on Add JAR, the file developer is looking for "derbyclient.jar". Click on it to open
and the file will be added to your project library.

Now that you have a Client driver added to your project run your program again. You should
now be error free.

(iii) Creating and Executing JDBC Statements
In generally, to process any SQL statement with JDBC, just follow these steps:

STEP 1: Establishing a connection

STEP 2: Create a statement

STEP 3: Execute the query

STEP 4: Process the ResultSet object

STEP 5: Close the connection

Creating Statements

A Statement is an interface that represents an SQL statement. Developer executes declarations
of objects and they create ResultSet objects, which is a table of data designing a database
ResultSet. A Developer needs a Connection object to create a Statement object.

For example,

HousesTables.viewTable generates a Statement object with the following code:

stmt=con.createStatement();

281

There are three types of statements in creating reports:

1. Statement: Used to execute simplistic SQL statements with no parameters in the code.

2. PreparedStatement: Used for re-compiling SQL statements that might hold input
parameters. See Using Prepared Statements for further knowledge or information. It is
also called Extends Statement.

For example, String sql = “select * from people where id=?”;

3. PreparedStatement preparedStatment = connection.preparedStatment(sql);
CallableStatement: (Extends PreparedStatement.) Used to perform stored methods
that may contain both input/output parameters.

create or replace procedure "INSERTR"

(id IN NUMBER, name IN VARCHAR)

is

begin

insert into user420 values(id,name);

end;

Executing Queries

To perform a query, call an execute method from Statement such as the following statements:

• Execute: Returns true if the initial object that the question declares is a ResultSet object.
Use a execute() method if the query could return one or more ResultSet objects.
Recover the ResultSet objects delivered from the query by frequently calling
Statement.getResultSet in code.

• executeQuery: Returns one ResultSet object at least.

• executeUpdate: Returns an integer describing the number of rows affected by the SQL
statement. Use this type of method if you are using INSERT, DELETE, or UPDATESQL
declarations in code.

For example, HousesTables.viewTable executed a Statement object with the following
code:

ResultSetrs = stmt.executeQuery(query);

282

Self-assessment Questions
1) Which of the following is/are true about DriverManager JDBC's class?

a) DriverManager of JDBC is a class that maintains a list of database drivers
b) It matches connection requests from the Java application with the proper

database driver using communication subprotocol
c) Both of the above
d) It matches a connection request from database driver using command protocol

2) Identify the following type of JDBC driver to be used when a type 3 or type 4 driver is
not available yet for your database?

a) Type 1 b) Type 2
c) Type 3 d) Type 4

3) The JDBC-ODBC Bridge support more than one concurrent open statements per

connection.
a) True b) False

4) Which of the following is used to call stored procedures in the database?
a) Statement b) PreparedStatement
c) CallableStatement d) None of the above

5) How does JDBC examine the data types of Java and database?
a) The JDBC driver converts the Java data type to the appropriate JDBC type

before sending it to the database
b) It uses a fault mapping for most data types
c) Both of the above
d) None of the above

6) Out of byte[] or a java.sql.Blob, which has the best performance when used to
manipulate data from the database?

a) byte[] b) java.sql.Blob

7) A Java program cannot directly communicate with an ODBC driver because JDBC

a) ODBC wrote in C language b) ODBC wrote in C# language
c) ODBC wrote in C++ language d) ODBC wrote in Basic language

283

8) Which of the following driver uses JDBC-ODBC Bridge driver turned the JDBC API
over ODBC API?

a) JDBC drivers in Java b) ODBC drivers in Java
c) a and b both d) None a and b

9) The______________ package holds classes that help in joining/connecting to a

database, sending SQL reports to the database and processing the query results.
a) connection.sql package b) db.sql package
c) pkg.sql package d) java.sql package

10) The_____________ method carries out a simple query and delivers a single ResultSet

object.
a) executeUpdate() b) executeQuery()
c) execute() d) noexecute()

11) The connection object can be initialised using the_____________ method of the Driver

Manager class.
a) putConnection() b) setConnection()
c) Connection() d) getConnetion()

12) Which of the following is a Metadata interface of JDBC?

a) DatabaseMetaData b) ResultSetMetaData
c) Both of the above d) None of the above

284

5.2.2 Handling SQL Exceptions
When JDBC encounters a failure during communication with a source of Data, it throws an
instance of SQL Exception as differentiating it from the normal Exception.

The SQL Exception case contains the resulting information that can help you to find out
the cause of the mistake:

• Retrieves the String object that contains this description by calling the method
SQLException.getMessage.

For Example:

public Batch add(String sqlLines) {
 notNull("SQL commands", sqlLines);
 try {
 statement.addBatch(sqlLines);
 } catch (SQLException e) {
 JdbcUtils.closeStatement(statement);
 throw new RuntimeException(e.getMessage(), e);}
return this;}

This code gets the JDBC driver's error message for an error, handled by the driver
or gets the Oracle error number and message for a database error.

• An SQLState code. Code including their respective meanings has been standardised by
ISO/ANSI and Open Group (X/Open), although some codes have been a reserve for
database hucksters to define for themselves. This String object consists of five
alphanumeric figures. Recover this code by calling the method
SQLException.getSQLState.

For Example:

public String getSQLState()
Retrieves the SQLState for this SQLException object.

Returns: It will return the SQLState value.

• An error code. An integer value was classifying the error that caused the SQLException
instance to be thrown by an integer. It is worth and application are implementation-
specific and might be the exact error code returned by the underlying source of data.
Recover the error by calling the method SQLException.getErrorCode.

For Example:

public int getErrorCode()

285

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html

Retrieves the vendor-specific exception code for
this SQLException object.

Returns: This public method will return the vendor's error code

• Cause. An SQL Exception instance might have a causal connection, which consists of
one or more Throwable objects that caused the SQLException instance to be thrown
by objects in this section. To operate this chain of circumstances, recursively call the
method SQLException.getCause until the query returns a null value.

For Example:

try {...
} catch (SQLException sqle) {
 for(Throwable t : sqle) {
 System.out.println("Throwable: " + t);
 Throwable cause = t.getCause();
 while (cause != null) {
 System.out.println(“Cause: “ + cause);
 cause = cause.getCause();
 } }}

This code allows to check for cause and not just loop through all the exception

• A source to any chained exceptions. If more than one error happens, the exceptions are
mentioned through this chain. Retrieve these exceptions by calling the method
SQLException.getNextException on the exception that threw away.

For Example,

public SQLException getNextException()

Retrieves the exception chained to this SQLException object by
setNextException(SQLException ex).

Returns: the next SQLException object in the chain; null if there are
none

Retrieving Exceptions:

The following method - JDBCUtilities.printSQLExecution outputs the SQLState,error code,
error description and cause contained in the SQLException as well as any other error chained
to it :

public static void printSQLException(SQLException ex)
{
for (Throwable e: exx)

286

https://docs.oracle.com/javase/7/docs/api/java/sql/SQLException.html

{
if (e instanceofSQLException)
{
if (ignoreSQLException(((SQLException)e).getSQLState()) == false)
{
e.printStackTrace(System.er);
System.er.println("SQLState: " +((SQLException)e).getSQLState());
System.er.println("Error Code: " +((SQLException)e).getErrorCode());
System.er.println("Message is: " + e.getMessage());
Throwable p = exx.getCause();
while(p != null)
{
System.out.println("Cause: " + p);
p = p.getCause();

}
}

}
}

}

For example, if you call the method HousesTable.dropTables with java DB as your DBMS. The
table Houses does not exist and you remove the call to
JDBCUtilities.printSQLExecution.ignogeSQLException, the output will be similar to the
following:

SQLState: 42Y55

ErroeCode: 3000

Message ‘DROP TABLE' cannot be performed on

‘TESTDB'.HOUSES' because it does not exist.

287

Self-assessment Questions
13) Find the following blocks are used for error handling in SQL Server?

a) try……catch b) try……final
c) try……end d) catch….try

14) Which of the following records can be checked for Errors?

a) CREATE b) DROP
c) DELETE d) INSERT

15) Exception handling is probably in SQL Server using ____________.
a) THROW b) FINAL
c) FINALLY d) Both A and B

16) Which of the following is an Error function used within CATCH block?
a) ERROR_STATE() b) ERROR_STATUS()
c) ERROR_MSG() d) ERROR_ERR()

17) ERROR_SEVERITY() method returns the ___________level of the error.

a) State number b) Full text
c) Severity d) Half text

18) Which of the following is global variable for error handling?

a) @@ERRORS b) @@ERROR
c) @@ERR d) @ERRORS

288

5.2.3 Accessing ResultSets
The SQL statements that are read from a database query, returns its data in the form of result
set. The standard way to select rows from a database, return the data in a ResultSet .The
SELECT statement does standard way to select the rows from the database and view them in
ResultSet.

Type of ResultSets:

The responsiveness of a ResultSet object is defined by one of the three different ResultSet types:

1. TYPE_FORWARD_ONLY

The sequence set cannot be scrolled; its cursor moves ahead only, from before the first row to
after the last row. The rows comprised of the ResultSet depend on whereby the underlying
database creates the results.

That is, it holds the rows that provide the query at unless the time

The query is executed or as the rows are retrieved.

2. TYPE_SCROLL_INSENSITIVE

The result can be writing; its cursor can move both forward and backwards

About the contemporary position and it can move to an arbitrary position.

The ResultSet is indifferent to changes made to the underlying data origin while it is open. It
holds the rows that provide the query at either the time the query is executed or as the rows are
retrieved.

3. TYPE_SCROLL_SENSITIVE:

The result can be documented; its cursor can move both forward and backwards

About the current state and it can move to an arbitrary position.

The ResultSet displays changes made to the underlying data source while the result set remains
open.

Note: The default ResultSet type is TYPE_FORWARD_ONLY.

289

For example,

try
{

Statement stmt = conn.createStatment(
ResultSet.TYPE_FORWARD_ONLY,
ResultSet.CONCUR_READ_ONLY);

}
catch(Exception ex)
{

 …..
}
finally
{

 …..
}

Methods of ResultSet interface:

The method of ResultSets can be divided into three sections:

1. Navigational Methods: This method is used to move the cursor around.

2. Get methods: Used to view the data in the columns in the contemporary row being
designated.

3. Update methods: Columns of the current row are updated with data in this method.
The updates can then be updated in the underlying database as well.

290

Self-assessment Questions
19) Which one of the following is/are default ResultSet type?

a) TYPE_SCROLL_INSENSITIVE b) TYPE_FORWARD_ONLY
c) TYPE_SCROLL_SENSITIVE d) All of above

20) Accessing Column Values- String, int, long, double, BigDecimal, etc. all take the name
of the column to obtain the column value for, as a parameter.

a) TRUE b) FALSE

21) The type of a ResultSet object fixes the constant of its functionality in two areas: the
ways in which the cursor can be manipulated and how the ResultSet object returns
simultaneous changes made to the underlying data source.

a) TRUE b) FALSE

22) Methods of the ResultSet interface can be broken down into __________ categories.
a) Four b) Two
c) Six d) Three

291

5.2.4 An Example JDBC Application to Query a
Database

This topic gives an example on how to fetch documents from a database table using JDBC
application. Before performing the following example, make sure you have the following in
place:

To implement the following example, you can replace the username and password with user's
actual username, password. MySQL or any other preferred database developer is using.

Required Steps are:

The following steps are required to create a new Database using JDBC application:

a) Import the packages: Requires that developer inserts the packets comprising the
classes of JDBC needed for the database code.

b) Register the JDBC driver: You initialises a driver so you can open a communications
channel with the database.

c) Connection free: Requires applying the DriverManager.getConnection() system to
generate a Connection object, which represents a real connection with a database
server.

d) Execute a query: An object of type Statement for construction and submitting an SQL
statement to select/fetch records from a table.

e) Extract Data from Table: Once SQL query is executed, you can fetch records from the
table.

f) Clean up the conditions/environment: Requires explicitly closing all database
resources versus relying on the JVM's garbage collection. The following example
describes the JDBC application

//STEP 1. Import required packages
import java.sql.*;
public class JDBCExample
{

// JDBC driver name and database URL
static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";
static final String DB_URL = "jdbc:mysql://localhost/";
// Database credentials

292

static final String USER = "username";
static final String PASS = "password";
public static void main(String[] args)
{

Connection conn = null;
Statement stmt = null;
try
{

//STEP 2: Register JDBC driver
Class.forName("com.mysql.jdbc.Driver");
//STEP 3: Open a connection
System.out.println("Connecting to database...");
conn = DriverManager.getConnection(DB_URL, USER, PASS);
//STEP 4: Execute a query
System.out.println("Creating database...");
stmt = conn.createStatement();
String sql = "CREATE DATABASE STUDENTS";
stmt.executeUpdate(sql);
System.out.println("Database created successfully...");

}
catch(SQLException se)
{

//Handle errors for JDBC
se.printStackTrace();

}
catch(Exception e)
{

//Handle errors for Class.forName
e.printStackTrace();

}
Finally
{

//finally block used to close resources
try
{

if(stmt!=null)
stmt.close();

}
catch(SQLException se2)
{}// nothing we can do
try
{

if(conn!=null)
conn.close();

}
catch(SQLException se)
{

se.printStackTrace();
}
//end finally try

}

293

//end try
System.out.println("Goodbye!");

}
//end main

}
//end JDBCExample

Self-assessment Question
23) Viewing a Result Set is a get method for each of the possible data types and each get

method has two versions −
• One that takes in a column name.
• One that takes in a column index.

a) True b) False

294

Summary
o A Java virtual machine, which provides the fundamental basis for platform

independence.

o The database provides support for generating and storing, applications of Java.
Database introduces the Java language to Oracle PL/SQL users, who are
accustomed to developing server-side applications that are integrated with SQL
data. The developer can develop server-side Java applications that take resources of
the scalability and performance of Oracle Database.

o It’s a functionality that JDBC provides more than on implementations for existing
and be used by the same application. The Application Programming Interface
(API) presents a mechanism for dynamically loading the correct Java packages and
registering them with the JDBC Driver Manager.

o The Driver Manager is using as a connection factory for creating JDBC
connections.

o Database Connectivity is an API for the programming language Java, which defines
how a customer/client may access a database.

o When a Java application requires a database connection, DriverManager.
getConnection() processes is used to generate a JDBC connection. The Link used
is dependent upon the appropriate database and JDBC driver. It will always begin
with the "JDBC:" protocol, but the rest is up to the appropriate vendor.

295

Terminal Questions
1. Demonstrate JDBC setup

2. Illustrate the ways to handle SQL exceptions

3. Describe the ways to access result sets

4. Demonstrate an example JDBC application

296

Answer Keys
Self-assessment Questions

Question No. Answer

1 c

2 b

3 b

4 c

5 c

6 b

7 a

8 b

9 d

10 b

11 d

12 c

13 a

14 d

15 a

16 a

17 c

18 b

19 b

20 a

21 a

22 d

23 a

297

Activity
Activity Type: Offline

Duration: 60 Minutes

Description:

Create a login form in java and connect it with database using JDBC.

298

Bibliography
e-References
• (2016). Retrieved 13 June 2016, from •

http://www.tutorialspoint.com/jdbc/pdf/jdbc-environment-setup.pdf

• (2016). Retrieved 13 June 2016, from
http://www.cbcb.umd.edu/confcour/Spring2011/CMSC424/Simple%20tutorial%2
0for%20using%20JDBC.pdf

External Resources

• Database Programming with JDBC & Java, 2nd Edition by George Reese,
Publisher: O'Reilly Media

Video Links

Topic Link

Connecting to a Database
http://www.javatpoint.com/steps-to-connect-to-the-
database-in-java

Result Set http://tutorials.jenkov.com/jdbc/resultset.html

Handling SQL https://www.youtube.com/watch?v=bfLT2ZSPJa8

Connections JDBC
http://www.tutorialspoint.com/jdbc/jdbc-db-
connections.html

299

http://www.cbcb.umd.edu/confcour/Spring2011/CMSC424/Simple%20tutorial%20for%20using%20JDBC.pdf
http://www.cbcb.umd.edu/confcour/Spring2011/CMSC424/Simple%20tutorial%20for%20using%20JDBC.pdf

 Notes:

300

	Chapter Table of Contents
	5.2.1 Setting up JDBC
	(i) Loading a Driver
	(ii) Connecting to a Database
	(iii) Creating and Executing JDBC Statements
	Self-assessment Questions
	5.2.2 Handling SQL Exceptions
	Self-assessment Questions
	5.2.3 Accessing ResultSets
	Self-assessment Questions
	5.2.4 An Example JDBC Application to Query a Database
	Self-assessment Question
	4.1.1
	Summary
	Terminal Questions
	Answer Keys
	Activity
	Bibliography
	e-References
	External Resources
	Video Links

